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Cluster mean-field approximations with the coherent-anomaly-method analysis
for the driven pair contact process with diffusion
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The cluster mean-field approximations are performed, up to 13 cluster sizes, to study the critical behavior of
the driven pair contact process with diffusiddPCPD and its precedent, the PCPD in one dimension. Critical
points are estimated by extrapolating our data to the infinite cluster size limit, which are in good accordance
with recent simulation results. Within the cluster mean-field approximation scheme, the PCPD and the DPCPD
share the same mean-field critical behavior. The application of the coherent anomaly method, however, shows
that the two models develop different coherent anomalies, which lead to different true critical scaling. The
values of the critical exponents for the particle density, the pair density, the correlation length, and the
relaxation time are fairly well estimated for the DPCPD. These results support and complement our recent
simulation results for the DPCPD.
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The absorbing phase transitidAPT) has been studied amples. Another frequently used method is the cluster mean-
extensively to understand many-body cooperative phenonfield (CMF) approximation[18] followed by the coherent-
ena in nonequilibrium systenjd]. Up to now, two univer-  anomaly method(CAM) analysis [19]. This method is
s_ality classes hav_e been firmly_ establish_ed: dir_ected percolanown to be effective to obtain a quantitative phase diagram
tion (DP) and parity conservatiotPC) universality classes 4ng sometimes even explore a true critical scaling behavior
[2]. A few other candidates for different universality classes[zo]_ However, the accurate measurement of critical indices
have been repprted in rgcent Iiteraturgs. One is the DP SY¥s only limited to rather simple DP systems. More complex
tem coupled with a static conserved figlel. Although the ﬁritical behaviors like in the PC and the PCPD classes could

reported values for the critical indices are rather scattere :
S : : ot have been probed with a reasonable accuracy as yet by
[4-6], it is widely believed that these systems form a univer Fhe CAM analysig21.27.

sality class, different from the DP and the PC class. Anothe X )
Y In this paper, motivated by our recent results that the

candidate is the pair contact process with diffusi€PD e o 2 .
that has as yet defied any consensus on the universality issgPCPP exhibits a distinct critical behavior from the PCPD

Various scenarios have been proposed, including a ne@nd also a mean-field-like behaviqr even in one dimension
single universality clas§7,8], a marginally perturbed DP [13], we develop the CMF approximations for the DPCPD
process with continuously varying exponef@, and a DP and the PCPD, expecting that the CAM analysis would pro-
process with a huge crossover tifri®,11], which are sum- duce a reasonable estimate for the mean-field-like critical
marized in a recent revieyl 2]. indices of the DPCPD. Also, direct comparison of the CMF
Recently, we studied the driven PCRDPCPD which is  data for two models may provide an independent support for
a variant of the PCPD by introducing biased diffusjas]. It~ different scaling behaviors.
is shown that the driving is relevant and the DPCPD exhibits We set up dynamic CMF equations up ne13 cluster
a “mean-field-like” critical behavior even in one dimension. Size. The steady-state solutions are obtained within machine
Since the DP class is insensitive to the driving, the DP sceaccuracy USiNgAATHEMATICA. Dynamic information is also
nario with a huge crossover time should be eliminated. Ther@xtracted from the smallest eigenvalue of the “linearized”
was a recent attempt to understand the PCPD using thigansition matrix. Subsequently, through the CAM analysis,
renormalization group(RG) analysis on a single-species We estimate the values of the critical exponents for the par-
Bosonic action derived from the microscopic master equaticle density, the pair density, the correlation length, and the
tion. However, it turned out to be improper to describe therelaxation time.
critical behavior of the PCPI)14]. In our previous work The model is defined on a one-dimensional latticel of
[13], we pointed out a possible reason for this failure angsites with periodic boundary conditions. At each site, there is
suggested that the PCPD may be described properly by & most one particle and no multiple occupancy is allowed.
field theory with two independent fields. Still, the search forHence the configuration is specified by the occupation num-
the coarse-grained action adequate for the PCPD remainshgr which is either 1 or 0 at every site. Each particle hops to
challenge. the right(left) with transition rateDg (D, ). The total number
Besides the RG technique on the proper aclid], there  of particles in the system varies by branching and annihilat-
are a few other efficient methods to investigate the absorbintig events mediated by a particle pdaRA—3A and A
critical phenomena. Numerical simulations along with a—®). The transition rate isp (1-p) for the annihilating
finite-size-scaling analysi§16] and direct integrations of (branching event with O<p=<1. These three dynamics can
corresponding Langevin equatiopk7] are two typical ex- be described by the master equation which takes the form
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E|P,t>——H|P,t>, (1)

where |P;t) is the state vector at time and the “Hamil-
tonian” is written asH=31,H; with

Hi = Dr(pidis1 — &&%,1) + DL(0iprss — &A1) — P&
A 1-p. R R A
= PiPi+1) — _2 (aiT_l + a1T+2 ~Dj_1 ~ Ui+2)PiPi+1,  (2)

Whereéi(é,T) is the annihilation(creation) operator of hard
core particles, satisfyingd;,a/}=1 and[&,4]=[4;,4'1=0
for i #j, p;=4'4, is the number operator, arig=1-p;.

Three different cases arise depending on the valu@&xof
andD,. The case oDg=D =0 represents the pair contact
process(PCB which has infinitely many absorbing states
and is known to belong to the DP class at least for stati
situations[23]. Since the cluster approximations along with

the CAM analysis have been already performed for the PC

by several authors previous[24], we skip the analysis of
the PCP here. The PCPD correspond®ieD, # 0 and the
DPCPD corresponds tBg#D,. In what follows, we set
Dr+D =1 for convenience anBg is chosen to be 1/21)
for the PCPD(DPCPD.

We consider am-site probability functionP,(p;t). It is
defined as the probability at tintdo find ann-site cluster of
the configurational statp=(p4,p>, ...,p,), Where an occu-
pational statep; at sitei takes either O or 1. Tracing out Eq.
(1) over occupational states outside the clusfer} with i
<0 ori=n+1), one may find a formal exact expression

dP,(p;t)

dt = Fp(Pn1 Pn+]_1 Pn+2) ’

()
where the functiorf:p involves the sets of-, (n+1)-, and
(n+2)-site probability. Notice thal,,,; andP,,,, terms show

up due to the boundary dynamics of thesite cluster.
As the infinite hierarchy appearing in E@) is the major

=]
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FIG. 1. Log-log plot ofps vs péz—p obtained from the 12-cluster
MF approximation for the DPCPD. The slope of the straight line
is 1. In the insetp,’s are plotted againgdz’~p. The slope of the
straight line is 2.

-P,(101)=P,(110) + P,(1100 - P,(1011). The absorbing
(vacuum probability P,(0000 can be determined by the
normalization condition. Hence the DPCPD case h#g 2
independent variables. In case of the PCPD, the left-right
symmetry further reduces the number of independent vari-
ables, for exampleR,(110)=P,(1011) and so on.

We use MATHEMATICA to find the stationary solutions
P2(p) up ton=13 with machine accuracfl02% for given
values of parameterg and Dg [25]. With P}, we calculate
the particle densitys and the pair density,, in the steady
state as

ps= Pi(l) = Trppﬁ(p) 5pk,l;

pp=P5(11) =Tr, Pi(p) 8p10p (5)

wherek (andk+1) denotes an arbitrary site inside the cluster.

ke

obstacle towards analytic treatment, we need an approximat a fixed value ofDg, the order parametergs and p,,

tion scheme to truncate the hierarchy at fimtén this paper,
we take the so-calleén+1,n) approximationd 18], where
P.:» and P,,, are expressed in terms of products Ryfs.
Then, the rate equations for thesite cluster probability
function become

dPy(p;t)
dt
where P,, is now the approximatémean-field probability

function.
The stationary probability distribution functiof;(p)

=F,({Pn}), (4)

simultaneously vanish for large (pair annihilation ratpand
the system exhibits an absorbing phase transition into
vacuum atp=p_.

Near the transition poinp?, the order parameters scale as

MF MF
Ps= An(pg - p)'Bl v Pp= Bn(pg - D)BZ ) (6)

where we find the mean-field values for the order parameter
exponents;8Y=1 and g¥F=2. Figure 1 shows th@=12
cluster approximation results for the DPCPD. We estimate
the critical pointp? and the critical amplitudes,, andB, by
fitting five data near the transitiop—pZ|<5x107), lin-

can be obtained by solving the set of coupled equationgarly forps and quadratically fop,. Our results are tabulated

F,=0. For givenn, the number of equations and the
number of variables are boti,2out not all are independent.

in Table | for the PCPD model and in Table Il for the
DPCPD model. Notice that the relative errors fidrare ex-

The translational invariance and the normalization conditiortremely small(~107°), but the amplitudesA, and B, still

guarantee that alP,(p) with p;=0 can be expressed in a
linear combination ofP,(p)’'s with p;=1. For example, in
case of n=4, one can easily show thaP,(001)=
P3(011) - P4(1011) = P,(11) - P4(111) - P,(1011) = P4(110)

have a sizable relative err¢r-107%).

It is interesting to note that, fan<3, the diffusion bias
does not enter the CMF rate equations at all. The functional
form of F,({Py}) in Eq. (4) is identical for the PCPD and the
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TABLE |. Cluster approximation results for the PCPD model.
The errors are in the last digits.

n e An Bn Cn

4 0.209 692 7263 4.473 51.855 17.59
5 0.194 357 9912 4.720 72.928 19.15
6 0.184 167 8676 4.859 93.789 19.93
7 0.177 119 7696 4.963 116.26 20.66
8 0.171 815 3824 5.039 139.91 21.22
9 0.167 700 6591 5.100 165.04 21.72
10 0.164 396 9333 5.151 191.63 22.17
11 0.161 685 1815 5.194 219.71 22.58
12 0.159 416 2244 5.232 249.28 22.96
13 0.157 488 7140 5.265 280.35

DPCPD. The left-right symmetry amori,(p)’s is automati-

cally enforced due to the translational invariance, regardless

of the details of the dynamics. For examplBg(110)
=P,(11)-P5(111)=P5(012) and so on. However, fon=4,
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FIG. 2. Log-log plots ofA, vs 1/n for the PCPD and the
DPCPD. In this figure, the value gf for the PCPD(DPCPD is set
to be 0.13350.153.

dPa;t)

=-M|P,;1),
dt |n>

(7

the translational invariance does not guarantee the |eﬂ'ri9m/here|Pn't> is the (n-cluste) state vector with the compo-
symmetry, which may be broken by the dynamics with anentsp (p:t) andM is a square matrix. It is trivial to show

broken left-right symmetry.

In nonequilibrium systems, dynamic relaxation behavior
provides one of the key pieces of information on the system
Off criticality, the order parameters are expected to approac
their stationary values exponentially with a characteristic re-

laxation time 7. At criticality, = diverges and the order pa-
rameters decay algebraically. One may roughly estiméie
numerically integrating the rate equatio) and fitting

that the eigenvalues &fl are equal to the inverse of various
characteristic time scales of the dynamics. The most domi-
ant slow mode is determined by the smallest eigenvAlye
.e., the relaxation time=A;".
We analyze the linearized equation up ne12. Near
criticality, we find
oF

7= Cy(pt-p)", (8)

time-dependent data into an exponential form. However, this . _ . _
method does not produce high-precision data. In this papewhere we find again the mean-field value for the relaxation

we propose a different method to calculatevith machine
accuracy in the CMF approximation scheme.

Since the stationary solutions of EG}) were obtained
with machine accuracy, we can linearize E¢) near the

exponenty'F=2. We estimate the critical poinp§ indepen-
dently, which are found to be consistent with previous esti-
mates from the density data in Tables | and Il, where we also
tabulate the estimated values for the amplit@efor both

stationary solutions very accurately. The linearized equatiothe PCPD and the DPCPD.

takes the form

TABLE II. Cluster approximation results for the DPCPD model.
The errors are in the last digits.

n P An By Cn

4 0.216 140 3513 4.254 44.37 16.69
5 0.202 800 9465 4.356 56.08 17.31
6 0.194 381 7410 4.405 66.48 17.55
7 0.188 503 1907 4.423 76.39 17.74
8 0.184 102 4774 4.424 85.76 17.83
9 0.180 689 8311 4.420 94.89 17.90
10 0.177 954 3360 4.410 103.7 17.94
11 0.175 711 7674 4.397 112.3 17.97
12 0.173 837 8803 4.383 120.8 17.99
13 0.172 247 8976 4.368 128.9

Now, we employ the coherent-anomaly meth@AM)
introduced by Suzuki and co-worke$9] and estimate the
values of the true critical exponents. Following the CAM
analysis, then dependence of the critical poim{ is pre-
dicted in the largen limit as

APt ~nl (9)
whereA,=pl-p. is the distance ofy from the true critical
point p.=lim,,_... py and v, is the true correlation length ex-
ponent.

We estimatep, by applying the Bulirsch and Stodor
BST) algorithm [26] to the series ofp]} and find thatp,
=0.1342) for the PCPD ang.=0.1543) for the DPCPD,
which are in good agreement with simulation results of 0.133
522(2) and 0.151 03@) [13]. Alternatively, we estimate,
andv, simultaneously using E¢9). In Fig. 2, we plotA, vs
1/nin a log-log plot, varyingp. to find the best power-law
fit. For the PCPD, the choice @.=0.1335 yields the small-
est fitting error withv, =1.04, where the data from=8 to
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FIG. 3. The CAM analysis for the order parameters for the FIG. 4. The CAM analysis for the order parameters for the
PCPD model. The slope of the straight line is —1.51, which leads tdPCPD model. The slope of the straight line is —0.92, which leads
B,~0.49. In the inset, the slope of the straight line is —0.084, whichto 8,~1.08. In the insetA, vs A, is drawn without a log scalé,
leads toB;~0.92. remains nearly constant which impligg~ g™ =1.

13 are used. For the DPCPD, the best choicg.is0.153 This mean-field-like behavior is expected for the two-
with v, =1.01. The relative error fop, is ~2%, and the dimensional PCPD28], of which the upper critical dimen-
error for v, is ~10%. The best simulation result of,  sion is believed to be 2. Our CAM results independently
=1.092) for the PCPD is within the errors, but the accuratesupport the conclusion drawn from our numerical simula-
measurement seems to be out of reach with data up to tions result§13] that the DPCPD critical behavior is distinct
=13. Our estimate of/, =1.01 for the DPCPD is in very from the PCPD behavior and the upper critical dimension for
good agreement with the expected mean-field vallfe=1.  the DPCPD is 1 rather than 2.

The amplitudesA, andB,, are expected to scale as Finally, we estimatey from the relation
_(VMF_V)
Ch~A 7, (1)
_(pMF_ _(pMF_
A, ~ An(ﬁl A B~ An(BZ B2, (100 wherey, is the true critical exponent for the relaxation time.

In Fig. 5, the log-log plots oz, vs A, are shown. We esti-

mate thaty ~1.8 for the PCPD andy=1.98 for the
where; and 3, are the true critical exponents for the order DPCPD. Rather surprisingly, the PCPD result is consistent
parameters. In Fig. 3, the log-log plotsAf andB, vs A, for  with the simulation result ofy,=1.8510) [8,9]. For the
the PCPD are presented. Here we pse0.133 522the best  DPCPD, the value of is quite close to the mean-field value
estimate from Monte Carlo simulation$13]. The CAM  of »}F=2, consistent with the simulation results.
analysis leads t@; ~0.92 andB,~0.49[27], both of which In summary, we estimated the critical exponents for the
are far from the simulation results gf ~3,~0.362) [8,9. = PCPD and the DPCPD, using CMF approximations along
In particular, there is a huge discrepancy between the estiwith the CAM analysis. For the PCPD, the values of the
mated values of3; and B, by the CAM analysis, which
warns us that the CAM estimates for the order parameter 25 i
exponents should be interpreted with great caution. This RO
huge discrepancy also implies that the cluster sizes up to
=13 are still too small for the PCPD to reach the asymptotic
regime where the system is dominated by long spatial corre-
lations, induced by the long-term memory mediated by soli- 20}
tary particleq9]. o)

On the other hand, the CAM analysis for the DPCPD

looks consistent with the simulation results. In Fig. 4, we use R S e I .
p.=0.151 032[13]. First, A, seems not diverging as,—0
and reaching a nonzero constant, which impfigs )" =1.
Second,B,, behaves very differently frord\, and diverges
with the exponent~0.92, which implies thatg,=pg5" 1= e 08
—0.92=1.08. Numerical simulation resulf43] are in com- ' A, ' ’
plete agreement with our CAM results. One should notice
that 8, does not assume the MF value, but seems to be equal FIG. 5. The CAM analysis for the relaxation time for the PCPD
to B1 except a probable multiplicative logarithmic correction and the DPCPD. The slope of the straight line for the PCPD
as found in the exponei/ v, by numerical simulationglL3]. (DPCB is —0.2(-0.02 which leads tor;=1.8(1.98.
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order parameter exponents are poorly estimated, while thieast, the CAM estimates for the DPCPD are in excellent
estimates for the correlation and the relaxation exponents accord with simulation results, supporting our conjecture that
consistent with simulation results within error bars. In con-the upper critical dimension of the DPCPD is 1.
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